Award Winners for 2014 Cornell Cup USA, presented by Intel

First Place - Smart Robotic Prosthetic Hand, Worcester Polytechnic Institute
Though the prosthesis industry has experienced a great revolution in upper body prostheses with the introduction of advanced myoelectric grippers, users are still far from being able to complete everyday tasks with the same level of ease they once could. Complaints of available products like the i-Limb and Bebionic hand include difficulty in performing tasks due to complex user interfaces as well as a high market cost that makes the technology especially expensive to people without insurance. As a solution to these issues we propose the creation of a Smart Prosthetic Hand – a semiautonomous robotic prosthesis capable of determining the most appropriate grip for grasping an object then executing that grip.

The Smart Prosthetic Hand will be an anthropomorphic prosthesis with independently movable fingers capable of executing a variety of grips. Autonomy will be achieved through the use of a unique control system which will take input from sensors in the hand to determine the shape of an object, the position of each finger, and quality of grip. Ultimately we will work with professionals and potential users to determine whether these features make the device easier to use and more effective.

Second Place - Situational Awareness Fault‐Finder Extension (SAFE), Portland State University
A majority of motorcycle accidents are the result of other vehicles failing to detect the presence of the biker. Besides dressing brightly, the cyclist must maintain a high situational awareness and drive defensively to compensate for their lack of conspicuity. An intelligent system that enhances an operator's awareness could prevent fatal accidents. Such a system could also assist the operator of a larger vehicle to notice the motorcyclist. Furthermore, distracted drivers could be alerted to potentially dangerous situations.

We propose building an affordable Situational Awareness Fault‐Finder Extension (SAFE) device, which could be used with automobiles, motorbikes, or bicycles. SAFE would be able to track lateral and posterior vehicles, monitoring their relative speed, position, and acceleration. An overhead representation of the surrounding traffic would be displayed to the user, with hazards and their probability being color‐coded. A vehicle slowly drifting into the operator's lane might be amber, while a speeding vehicle about to rear‐end them might be red. Similarly, a driver inadvertently turning into another vehicle would also be notified. External lights would be lit to alert other vehicles of the impending collision. Finally, a SAFE device would integrate both day and nighttime operation, enhancing the user's awareness whenever needed.

Third Place - The Submersibles, The Pennsylvania State University
Earth is our home. Around 72% of the earth’s surface is covered by oceans. The oceans continuously undergo significant changes driven by numerous internal and external forces. Over the past century and a half, we humans have had a seriously negative impact on the oceans. The short and long term effects of human intervention on the oceans such as pollution, greenhouse gas emissions, oil spills, and radioactive leaks is still not fully understood. Today, there exists a vast variety of means for studying the ocean’s changes including research vessels as well as expensive scientific floatation devices.

We propose a new system for conducting oceanic studies with devices called the AUTOCOs. AUTOCOs are a system of low-cost autonomous ocean climate observers packed with an array of sensors designed to drift with the ocean currents and deliver real-time data to a centralized computer. The real-time data will be queried and cross-referenced with astronomical or human-caused events as well as weather conditions. This data could then be obtained freely via our APIs which would be used by scientists and researchers around the world to aid their study of the ocean and climate changes.

People’s Choice - Smart Collar, University of Illinois at Urbana-Champaign
Canines can be thought of as incredibly complex machines with efficient and sensitive data acquisition and processing, as well as adept navigation of unknown environments. As such, they are incredibly valuable for various service animals roles in the community and law enforcement. However, we believe that such capabilities and data can be augmented and improved to add further value to the animal-handler relationship.

SmartCollar is a wearable computer and data acquisition system intended for service and rescue dogs in the field. SmartCollar will enable new modes of communication and data streams to be sent to handlers for further processing. Useful information can be obtained and processed a sensor array. These can serve to provide additional sensing capabilities and greater fidelity of the dog-provided data to the handler, allowing for aggregate human-in-the-loop control of multiple agents.

In a search and rescue function, a single handler can provide remote verification of the dogs findings and provide feedback with further instructions. In a service animal role, dogs can detect various medical emergencies and can contact 911, enhanced with biometric notes and location data. We see this platform as a generalized means to increase the fidelity of the data that handlers receive from dogs, as well as a method for the animal to communicate in an internet of things.

Media Award - Synergetech, University of Houston
“Practice does not make perfect. Only perfect practice makes perfect” – Vince Lombardi

Basketball players practice their techniques, approach, and overall body positioning while attempting a shot. The problem with the current way athletes practice is that a shot can be made with bad techniques. This constant justification of bad behavior confuses the body and causes our muscle memory to never truly set in. We are proposing a jump shot analysis system based on inertial measurement unit (IMU) motion capture to gain a better understanding of the actions performed in successful shot attempts.

A thorough breakdown of every movement and muscular signal, using electromyography (EMG), will allow us to relay critical information to athletes enabling them to truly practice perfectly. While there are systems that track the angle of the ball’s trajectory, no one has created a system for full body analysis. Any IMU motion capture suit in the market today is unavailable to most consumers due to cost. We will compete with the competitors’ prices, as well as provide more useful information regarding the entire shooting process, possible corrections, and real-time analysis of the players. This will become a one-on-one coach for every player.

Entrepreneurship Award - VDAP, University of Akron
The team’s project is to design a portable variable digital audio processor that can use an audio input to generate new, user-defined sounds in addition to being able to apply all of the standard effects found in current effects systems. The audio processor will use a brain-computer interface and a tablet or smartphone to control the various parameters of the sound being created. This system will solve many of the issues experienced by musicians when playing live, such as a lack of stage presence due to being tethered to an effects system by a cable and the inability to recreate sounds that were made in the studio. The system our team is designing will be a completely new way to control live sound and instrument effects combined with a robust digital audio workstation that can be used to generate completely new sounds based on the live audio input signal.

Data Analytics Award - The Submersibles, The Pennsylvania State University
Earth is our home. Around 72% of the earth’s surface is covered by oceans. The oceans continuously undergo significant changes driven by numerous internal and external forces. Over the past century and a half, we humans have had a seriously negative impact on the oceans. The short and long term effects of human intervention on the oceans such as pollution, greenhouse gas emissions, oil spills, and radioactive leaks is still not fully understood. Today, there exists a vast variety of means for studying the ocean’s changes including research vessels as well as expensive scientific floatation devices.

We propose a new system for conducting oceanic studies with devices called the AUTOCOs. AUTOCOs are a system of low-cost autonomous ocean climate observers packed with an array of sensors designed to drift with the ocean currents and deliver real-time data to a centralized computer. The real-time data will be queried and cross-referenced with astronomical or human-caused events as well as weather conditions. This data could then be obtained freely via our APIs which would be used by scientists and researchers around the world to aid their study of the ocean and climate changes.


Honorable Mention

Mr. Meds, University of Massachusetts-Lowell
Our team proposes to design a mobile robot for hospitals that delivers medications through task scheduling. Taking into account the patients medication type and dosage, our system will automate a process that is currently time consuming and prone to human error. This process for scheduling and dispensing medicine requires hospital pharmacists to fill prescriptions, label the medication with patient’s information and indicated directions, and finally gives the medication to the patients nurse and care team who will dispense the medication then monitor the patients. With hospitals being extremely busy there is too much room for human error due to the small details that have to be carefully checked. If errors are made, patients can suffer threatening side effects that in extreme cases can lead to death.

Our proposed design, Mr. Meds, will showcase a new mobile robotic platform designed to lessen human error associated with medication scheduling and dispensing. Using cutting edge technology such as face and voice recognition, Mr. Meds will have the capability to interact with patients making the process more enjoyable. Interfacing through an Android mobile phone, Mr. Meds will also make the job of a pharmacist more streamlined.

Motion Safe Systems, Oregon State University
Transportation safety is a major concern in today's society. According to the World Health Organization, 1.2 million people are killed, and as many as 50 million are injured, in road accidents around the world each year [1]. Our team proposes the creation of a wireless network that communicates among nearly all types of vehicles on today's roadways to create not only a safer traveling experience but also a less stressful one as well.

By providing a way for vehicles to communicate between each other, we can save lives and decrease the number of vehicle accidents. Our product MotionLink will reliably provide informative alerts about current surroundings to the operators of all types of vehicles including, cars made after 1996, bicycles, and motorcycles. MotionLink is anchored by an embedded sensor platform we’re designing that will communicate by radio using a wireless mesh network protocol. This will make the roads a safer place by giving drivers real-time information updates from other MotionLinked vehicles.

Flux Excursion, Oregon Sate University
Dr. Wattson: Power Analyzer is an integrated system which will bring real time data collection, logging, and analysis of home energy usage to consumers in an easy and understandable way. Presently, few consumers have the tools to make informed decisions about their energy use. The goal of this project is to help people evaluate and reduce their current energy consumption habits through measurement based recommendations and social network interaction. The Dr. Wattson monitoring system consists of multiple outlet mounted monitoring units all of which communicate to a central base station. This base station will record and process the user’s energy use habits, presenting them with easy to understand graphs, comparisons, and suggestions to help them save energy and money. Integration with existing social networking sites will to allow users to share and compare their energy consumption, encouraging continued effort toward reducing their power use.

NAO Navigators, Arizona State University
Robotic systems are predicted to become an essential part of everyday life. Currently, modern manufacturing industries are heavily taking advantage of robots to facilitate and speed up the process of assembling fine products and parts. Advances in robotic research in academia are pushing the robotic industry forward with a great pace. Universities are getting more involved in various aspects of robotics research. Each day, new possibilities appear for robots to improve the quality of life for Americans, even if they don’t know it.

The Defense Advanced Research Projects Agency, or DARPA, government military research agency has created a list of Robotics Challenges for universities and researches to accomplish. One of the main focuses of these challenges is to create frameworks that allow robots to help in disaster relief efforts. The NAO Navigators have taken on the challenge of “teaching” an autonomous humanoid human robot to use a human vehicle. This framework will be demonstrated using a NAO humanoid robot and a small electric car. The hope is for this framework to be used to create human sized robots that can commandeer any type of vehicle.

VDAP, University of Akron
The team’s project is to design a portable variable digital audio processor that can use an audio input to generate new, user-defined sounds in addition to being able to apply all of the standard effects found in current effects systems. The audio processor will use a brain-computer interface and a tablet or smartphone to control the various parameters of the sound being created. This system will solve many of the issues experienced by musicians when playing live, such as a lack of stage presence due to being tethered to an effects system by a cable and the inability to recreate sounds that were made in the studio. The system our team is designing will be a completely new way to control live sound and instrument effects combined with a robust digital audio workstation that can be used to generate completely new sounds based on the live audio input signal.

Smart Energy Micro Grid (SEMG), University of Houston
Energy is a major concern in today’s society. When considering the high cost of fuel, the rise in air pollution, global warming and the low efficiency of power plants, it is clear that society needs to rethink the way it consumes energy. However, the process of shifting from the current model to a new one, such as micro grid systems, is very challenging due to the complexity and cost of new systems.

As a partial solution to the issue, this team proposes the creation of a Smart Energy Micro Grid system or SEMG. SEMG will be a multitask system capable of controlling the power distribution process, protecting the grid, ensuring the efficiency of the system, and monitoring overall power usage across multiple sources. With these properties the SEMG will act as a universal control system with a broad range of capabilities. As a result, the SEMG will lower the cost and complexity of micro grid systems.

FANGS, University of California, San Diego
Nocturnal animal behavior is often a mystery to researchers due to the dangers of working in darkness and inherent human disturbance to the wildlife. This is particularly true of our collaborators at the California Wolf Center. Researchers there face the difficulty of attempting to study an animal most active at night. Also, their end goal is to release the wolves back into the wild and therefore any human interaction with the animals runs the risk of the wolves becoming emboldened in the presence humans, detrimental to the rehabilitation process. Our solution to this is FANGS: Functionally Autonomous Nocturnal Guidance System.

FANGS is a remote controlled vehicle with IR Cameras and LIDAR for obstacle awareness and subject tracking in low light conditions. FANGS requires a human driver for direction, but assists the driver, by intelligently avoiding obstacles and cueing the driver, as visibility is low in night conditions. Computer vision algorithms will allow the vehicle to navigate the terrain and track the wolves once they are in sight of the IR cameras. Once in the presence of the subjects the cameras will record data about the wolves and their behavior. Placing these on a mobile platform allows researchers to move around and locate the wolves, and record behavioral and physical data about the animals each night, giving unprecedented data to wildlife researchers.

Team Envision, Virginia Polytechnic Institute
According to the World Health Organization (WHO), around 40 to 45 million people in the world are totally blind. Due to longer life expectancies there is a considerable increase in the number of people who are blind and this number is expected to double by 2020.

As a result, in recent times, there has been a lot of focus on designing intelligent systems that enhance the lifestyle of the visually impaired. However, the majority of existing systems mainly addresses the issue of obstacle avoidance and provides crude navigational guidance. There are only a few solutions that try to give the user a holistic perception of his/her environment. Hence, it is beneficial to pursue the design of a system that assists the visually impaired in outdoor navigation that can eventually enhance the way they perceive the environment around them.

The proposed project — called the Interactive Vision Assistant or “I.V.A” — aims to design an interactive system to assist the blind in outdoor navigation, by offering intelligent feedback about the surroundings in addition to providing directional guidance. Besides navigational guidance and obstacle avoidance, this project incorporates tasks such as Human Detection and Proactive Feedback.