Cornell University

Award Winners for 2013 Cornell Cup USA, presented by Intel

First Place - Titan, University of Pennsylvania
Our team is designing an untethered, powered, upper body exoskeleton for use in the fields of rehabilitation and therapeutic application, as well as occupations requiring augmented strength. Though systems exist, past exoskeleton endeavors have led to bulky, expensive, invasive, and tethered solutions[1]. The challenge is to build an exoskeletal system that is inexpensive, streamlined, and wireless.

Our solution is unique in that it will be a low-cost, ergonomic device actuated through sensors measuring the user’s motion and muscle activity. Through on-board sensing, the skeleton can provide rich data, such as range of motion or strength for use in physical therapy. This data can be used by doctors and patients to more accurately track improvement over time. With its low cost, hospitals could employ multiple devices and aid a larger audience of patients; the devices could even be used at home for physical therapy, which would dramatically increase quality of life for patients.

Outside of physical therapy, augmented strength is applicable to physically intensive occupations, as well as search and rescue operations. Each year, thousands of workers must take leave due to injuries triggered by heavy lifting; with augmented strength, workers could avoid harmful situations.

Second Place - Cyber Physical Systems, Worcester Polytechnic Institute
Our goal for this project is to provide individuals with locked-in syndrome the ability to live more independently and improve their overall quality of life through the use of a semi-autonomous wheelchair and Body/Brian Computer Interface. Although semi-autonomous wheelchairs have existed for the past decade, no commercially feasible solution has been presented due to the high costs associated with commonly used navigational sensors (such as LIDAR) and closed design frameworks that are often difficult to reproduce or expand upon. Our project is unique in the sense that our proposed solution revolves around cost-effective, modular sensor packages that can be easily mounted to a wide variety of commercially available powered wheelchairs, thus allowing for large scalability and ease of assembly. With this cost-effective and modular design in mind, the project team is working to create a product that will help advance the framework for design of various cyber physical systems. Our sensor suite is comprised of infrared and ultrasonic sensors used in tandem for low-level obstacle detection, simple-to-mount optical encoders used for acquiring odometry data, a Microsoft Kinect used for visual imagery, and a Body/Brain Computer Interface for sampling and processing a user’s EEG signals. The data acquired by these sensor packages will be processed by a high-level intelligent agent that will implement SLAM (Simultaneous Localization and Mapping) and allow for safe and reliable indoor navigation.

Third Place - Intracell, University of Colorado Denver
The proliferation of cellular phones and mobile devices has shaped all aspects of communication, learning, and entertainment. However, traditional cellular phone service methods still struggle to provide adequate service coverage under various geographical and architectural constraints. Our project solves this issue with inexpensive, networked cell phone transceiver nodes that function together as a local extension to the global cellular network. Each transceiver node is a small single-board computer, about the size of a Wi-Fi router. The network connection provides a digital path for calls, bypassing the geographical and architectural constraints that would normally prevent coverage.

Our low-cost, modular approach to cellular phone service fills the gaps left by traditional distribution methods by taking advantage of emerging technologies of high-performance system-on-chip (SoC) architectures. Our proposed solution has the potential to work independent of existing cell networks or could be used to enhance existing system infrastructure. As an independent system, our solution enables the democratization of cellular phone service, by empowering communities to provide their own coverage. As an enhancement to existing systems, our solution provides an inexpensive alternative to new cell tower construction. A successful demonstration would allow a cellular phone user seamless integration between the provider network and our system.

People’s Choice - Team BioBot, University of Massachusetts, Lowell & Padmasri Dr. B.V. Raju Institute of Technology (BVRIT)
In countries all over the world, human lives are being needlessly cut short by various contagious diseases. These diseases are caused by various types of harmful bacteria and viruses present in the air we breathe. There are some places people are more susceptible to infection, such as a hospital surgical environment. Our goal is to design an automated device capable of quantizing the infectious agents in these areas, providing much-needed information to the proper personnel.

By leveraging current development in biosensor technology, we can design virus and bacteria sensors that can quickly determine the quantity of these infectious agents in a sample volume. Creating an autonomous sensor package will allow hospitals and other susceptible environments all over the world monitor and understand the risk of infection. The mounting of this device on a robotic platform adds functionality while reducing human presence in an area. Utilizing the power scaling functionality of the Intel Atom processor, the whole system will be controlled and run off of the robot platform’s existing battery.

Media Award - Intracell, University of Colorado Denver
The proliferation of cellular phones and mobile devices has shaped all aspects of communication, learning, and entertainment. However, traditional cellular phone service methods still struggle to provide adequate service coverage under various geographical and architectural constraints. Our project solves this issue with inexpensive, networked cell phone transceiver nodes that function together as a local extension to the global cellular network. Each transceiver node is a small single-board computer, about the size of a Wi-Fi router. The network connection provides a digital path for calls, bypassing the geographical and architectural constraints that would normally prevent coverage.

Our low-cost, modular approach to cellular phone service fills the gaps left by traditional distribution methods by taking advantage of emerging technologies of high-performance system-on-chip (SoC) architectures. Our proposed solution has the potential to work independent of existing cell networks or could be used to enhance existing system infrastructure. As an independent system, our solution enables the democratization of cellular phone service, by empowering communities to provide their own coverage. As an enhancement to existing systems, our solution provides an inexpensive alternative to new cell tower construction. A successful demonstration would allow a cellular phone user seamless integration between the provider network and our system.


Honorable Mention

MetroSwift, Oregon State University
Modern vehicle interfaces are becoming increasingly complex since there are so many adjustable aspects to a vehicle, but this complexity has moved the driving experience away from the road and has created distractions for the driver. Distractions like these lead to thousands of traffic related accident each year. The sole purpose of the driver is to pay attention to the road and drive as safely as possible, while also have an enjoyable driving experience. However the driver does need to make adjustments to the vehicle from time to time, by why should it be sprawled all over the dash and center console? Why can’t it all just be adjusted from directly in front of the driver, via the steering wheel?

Our project is to enhance the driver experience by making a simple interface which is concentrated in one region - the dash board and steering wheel. In addition, moving the controls closer to where the eyes look at the road reduces distractions and creates a safer driving experience. We will do this by creating a unified interface which controls all major sub-systems of a car and reports back the state of critical systems.

Team Sigma, Howard University
In our daily lives, we have generally come to rely on our memory, reminders on mobile devices, and physical checklists for making preparations to take on our daily tasks; These preparations include knowing the time and location of each task, as well as what materials/items will be required for each engagement. Despite memory reminders and checklists, we still often find ourselves in situations where we either show up for our tasks without required materials or leave important items behind as we move between tasks. Thus, a noteworthy imperfection to the working of a reminder is the reminder’s failure to monitor and crosscheck if a user packs all essential items.

For a user to avoid the frustration of losing/forgetting important items, Sigma’s project aims to create a smart backpack that accesses a user’s daily schedule, deduces the items required for scheduled tasks, and notifies the user whenever these required items are outside a certain range of the backpack. Sigma’s solution seeks to alert the user if any required item is missing by integrating the computational power and storage ability of Intel’s processor with an RFID reader and tags, an accelerometer, an LCD screen, and a mobile application.

Assistive Robotic Manipulator (ARM), Columbia University
There is an increasing demand for robots in the home – especially for people who require assistance with activities of daily living. Unfortunately, most assistive robotic arms on the market are beyond the budget of those who require their assistance. Our aim is to design a relatively inexpensive, human friendly wheelchair mounted robotic arm (WMRA).

The proposed WMRA will make use of series elastic actuators and will require the design of a control system that will allow it to “feel” around its environment without the need for vision. The series elastic actuators will provide compliance at the joints for safety and will be combined with potentiometers to convert angular displacement into torque feedback at each joint. To facilitate the assistance provided by the manipulator a non-invasive brain computer interface (BCI) will allow users to plan manipulation of objects. Additionally, the team hopes to make the physical design of the WMRA as open-source as possible, which will allow other universities and individuals to download the design and improve the capabilities of the arm.

ProtoDrive, University of Pennsylvania
If you were to drive your vehicle today from Ithaca to Manhattan, Google or Garmin maps would give you the time and distance. In the case of an electric vehicle, with a limited 80-100 mile driving range, we need to know the KWhr energy requirement for the trip. This depends on the changes in elevation, the stop-and-go due to traffic congestion, the friction of the road, and so on. Our goal is to develop an experimental test-bed for electric vehicle drive cycle simulation and optimization of on-board energy management. This will eventually lead to Google Maps EV edition (with KWhr estimates for different vehicles and routes passing battery swap stations).

Using the Intel DE2i-150 platform, we will develop ProtoDrive, a desktop-sized electric vehicle platform capable of simulating different battery-super capacitor scheduling schemes to maximize the lifecycle of the battery and also increase the vehicle range. It consists of a physical model of an electric vehicle power train (motor, controller, battery, super capacitor) couples with an active dynamometer, making it possible to run the power train through its full speed and torque range. Our solution is unique since we are scaling down the battery voltage levels in order to configure the system with different vehicle parameters for various types of cars and trucks. This will make it feasible to investigate the use of a hybrid battery/super capacitor system in response to real commuter drive cycles and to develop scheduling algorithms that optimize the flow of energy between the battery, super capacitor and motor.

URead Braille, University of Rochester
It is not without reason that we often refer to the computer screen as a window looking out into a sea of knowledge. The reason is twofold: Firstly, we refer to computer systems as ‘looking out into a sea of knowledge’ because they provide us with a way in which we can access and parse through text, images, videos, music that have been posted throughout time and spread worldwide. Secondly, we refer to computer screens as ‘windows’ because most of the information we receive—text, images, videos—are accessed visually. To the visually impaired, this is a significant limitation of screen systems. The goal and challenge of our project is to meet this need.

The project aims to create a refreshable braille display that acts as a screen for the blind. The braille display will be able to read in text and pdf files and output the result on the screen through a tactile display. Mimicking the traditional hole-punched paper braille books, the braille ebook will be able to give those who cannot access pdfs, a whole new library of information. If this project is successfully implemented, it is the first step to opening up a new library of information.

PandaCare, University of Pittsburgh
Dementia is the sixth-leading cause of death in the United States. Payments for Dementia care are estimated to be $200 billion in 2012. To reduce the cost and improve the care quality, we propose to develop a wearable electronic unit and associated software platform for Dementia Care. The system is called PandaCare which consists of an electronic button and wristband. The button is a miniature wearable computer in a normal look chest button form. It contains a large variety of sensors including cameras, GPS sensor, accelerometer, gyroscope et.al, which can perform indoor, outdoor location, fall detection, wireless real time communication et.al. In order to keep track of patient’s general health condition, a wristband is designed to keep monitoring patient’s physiological signals, such as the body temperature, ECG signal, and respiration rates. Our system will operate in a fully automatic fashion where the Patient is required to do nothing more than wearing the PandaCare unit. This device provides adequate information for the caregiver (family members or care facilities) to keep good track of the patients, or even to understand their health, safety and psychological needs, and provide help when necessary with much less cost than the current Dementia Patient care systems.

Team Lions, Columbia University
For the elderly and disabled, dropping an object can be a serious issue. How would they pick things up if they were all alone? Our project aims to solve this issue by having a semi-autonomous robot complete this action for them. This robot, Boost, uses a video camera to display objects to the user on the user's panel screen. After the user manually selects the object using the screen display, the robot will automatically retrieve the object using a grabbing tool and return the dropped object to the user through the use of an elevating platform.

Boost requires a video camera, wireless capabilities, a grabbing mechanism to pick up objects, as well as additional sensors to identify the location of the object and determine whether object retrieval was successful. Our solution is unique in that there is no similar robotic device in the market that can grab a variety of small objects, from keys to glasses, and return them to the user. The exciting aspect of this project is that it is a very practical solution for the elderly/disabled who are left alone for a period of time. Project Boost aims to improve their overall quality of life.

Salty Dawgs, Southern Illinois University Carbondale
More is known about outer space than what is known about our planet’s oceans. Recent advances in nautical exploration via remotely operated vehicles have been useful in revealing our oceans depths; nonetheless, they are still costly to operate, requiring significant man-hours due to constant crew involvement and a support ship which can cost $17,500 a day to operate [1]. An alternative low-cost option is needed for future oceanic studies; modularity and autonomy are key.

A proposed solution is the development of a self-sustaining autonomous underwater vehicle (AUV) capable of collecting large amounts of research data at a reduced cost by removing human interaction. Towards this end, the AUV must be able to both operate autonomously for a prolonged period of time and generate its own electricity. The minimization of power consumption through the efficient use of the Intel Atom and the capture of solar energy provide an effective answer to these problems. In addition, this platform offers adaptability which can meet the specific needs of diverse users. Exercising the AUV to its full potential will impact not only the methods of research and exploration humanity uses but will ultimately change the way we look at and interact with our planet.

Team Ignitus, University of Houston
In 2011, 81 American firefighters laid down their lives in an effort to preserve life and extinguish a burning structure of forest. These deaths can be prevented with more information concerning the exact nature of the fire in the structure or forest. What is fueling the fire? What is the structural integrity of the supports? How hot is the fire? Are there people still inside the building? Armed with this type of information a firefighter can make more informed decisions about how to attach the fire, where to enter, where to enter, where to find the person and other critical choices that mean life or death for the people in the blaze. University of Houston’s Team Ignitus has been confronted with this challenge. The creation of a robotic device that can help with the preservation of life in these dangerous situations and collect and transmit data to a team will be the solution to this problem. This device will be manipulated by the firefighter via on-site remote control. The operator will drive the device into the burning structure while a computer will collect imagery and data concerning the fire. With this information, the operator can help guide the team through the safest possible entrance and exit. The more effective and efficient our men and women can negotiate the burning structure the more lives they can save.

Ouroboros, Columbia University
As of 2011, more than 13% of Americans are at least 65 years old and 29% of those living at home do so alone. Independent living becomes more difficult with age and once trivial tasks, such as transporting items, require assistance. The current industry's elderly assisting robots come with expensive computer personalities and complex interfaces which are counter-intuitive to the elderly user and fail to provide human-centric physical assistance. Our team proposes a humbler solution in Alfred: an intuitively controlled, mobile, self-balancing platform with voice over IP capability. Alfred provides lifting capability for up to 50lbs and an auto-stabilizing tray for items requiring more finesse during transportation.

Alfred's advantages stem from autonomous and intuitive motion controls that can be used to navigate and control the platform. Force transducer arrays on the platform's circumference translate a touch input into omnidirectional motion or a change in platform height. Additionally, an infrared camera allows Alfred to detect and autonomously follow the user where space is constrained. A dynamic system balances and raises or lowers the platform, stabilizing the payload when Alfred encounters surface transitions, surmountable obstacles, or external forces. Alfred's mission is intuitive assistance and elderly acceptance.